
Sensing, Navigation and Reasoning Technologies 

for the DARPA Urban Challenge 
 

 Mohammed Aly     Joel W. Burdick    Vanessa Carson     Stefano Di Cairano  

Noel duToit     Melvin Flores     Jessica Gonzalez     Andrew Howard  

Laura Lindzey     Jeremy Ma     Richard M. Murray2      Richard Petras  

Sam Pfister     Dominic Rizzo     Tichakorn Wongpiromsarn  

 

California Institute of Technology/Jet Propulsion Laboratory  
 

Team Caltech  

13 April 2007 
 

DISCLAIMER: The information contained in this paper does not represent the official policies, either 

expressed or implied, of the Defense Advanced Research Projects Agency (DARPA) or the Department 

of Defense. DARPA does not guarantee the accuracy or reliability of the information in this paper.  

Executive Summary 

This paper describes Team Caltech’s technical approach and current progress towards develop-

ing new technologies to enable it to compete in and win the 2007 DARPA Urban Challenge. Our 

primary technical thrusts are are three areas: (1) mission and contingency management for 

autonomous systems; (2) distributed sensor fusion, mapping and situational awareness; and (3) 

optimization-based guidance, navigation and control. Preliminary work in each of these areas, 

combined with a systematic approach to overall systems engineering and field testing, has dem-

onstrated the ability for our system to navigate in traffic situations consistent with the DARPA 

Technical Criteria. The development of an optimization-based, dynamic planner has proceeded 

more slowly than expected and has held back our progress in accomplishing basic traffic and ad-

vanced navigation tasks. System level tests have been used to identify additional areas for con-

tinued work over the remaining 203 days until the competition. 

1  Introduction and Overview 

Team Caltech was formed in February of 2003 with the goal of designing a vehicle that could 

compete in the 2004 DARPA Grand Challenge. Our 2004 vehicle, Bob, completed the qualifica-

tion course and traveled approximately 1.3 miles of the 142-mile 2004 course. In 2004-05, Team 

Caltech developed a new vehicle, Alice, to participate in the 2005 DARPA Grand Challenge. 

Alice utilized a highly networked control system architecture to provide high performance, 

autonomous driving in unknown environments. The system successfully completed several runs 

in the National Qualifying Event, but encountered a combination of sensing and control issues in 

the Grand Challenge Event that led to a critical failure after traversing approximately 8 miles. 

As part of the 2007 Urban Challenge, Team Caltech is developing new technology for Alice 

in three key areas: (1) mission and contingency management for autonomous systems; (2) dis-

tributed sensor fusion, mapping and situational awareness; and (3) optimization-based guidance, 

                                                        
2Corresponding author: murray@cds.caltech.edu 



Team Caltech 

2 

navigation and control. This section provides a summary of the capabilities of our existing vehi-

cle, and describes the framework that we are using to create a robust and reliable vehicle capable 

of winning the 2007 Urban Challenge. 

Problem Description and Approach  For the 2007 Urban Challenge, we are building on the 

basic architecture that was deployed by Caltech in the 2005 race, but providing significant exten-

sions and major additions that allow operation in the more complicated (and uncertain) urban 

driving environment. Our primary approach in the desert competition was to construct an eleva-

tion map of the terrain sounding the vehicle and then convert this map into a cost function that 

could be used to plan a high speed path through the environment. A supervisory controller pro-

vided contingency management by identifying selected situations (such as loss of GPS or lack of 

forward progress) and implementing tactics to overcome these situations. 

For the urban challenge, several new challenges must be addressed. Road location must be 

determined based on lane and road features, static and moving obstacles must be avoided, and 

intersections must be successfully navigated. We have again chosen a deliberative planning ar-

chitecture, in which a representation of the environment is built up through sensor data and mo-

tion planning is done using this representation. A significant issue is the need to reason about 

traffic situations in which we interact with other vehicles or have inconsistent data about the lo-

cal environment or traffic state. 

System Architecture  A key element of our system is the use of a networked control systems 

(NCS) architecture that we developed in the first two grand challenge competitions. Building on 

the open source Spread group communications protocol, we have developed a modular software 

architecture that provides inter-computer communications between sets of linked processes [2]. 

This approach allows the use of significant amounts of distributed computing for sensor process-

ing and optimization-based planning, as well as providing a very flexible backbone for building 

autonomous systems and fault tolerant computing systems. This architecture also allows us to 

include new components in a flexible way, including modules that make use of planning and 

sensing modules from the Jet Propulsion Laboratory (JPL) and the OTGX software from North-

rop Grumman, described in more detail below. 

A schematic of the high-level system architecture that we are developing for the Urban Chal-

lenge is shown in Figure 1. This architecture shares the same underlying approach as the soft-

ware used for the 2005 Grand Challenge, but with three new elements: 

Canonical Software Architecture for mission and contingency management. The complexity and 

dynamic nature of the urban driving problem make centralized goal and contingency manage-

ment impractical. For the navigation functions of our system, we have developed a decentralized 

approach where each module only communicates with the modules directly above and below it 

in the hierarchy. Each module is capable of handling the faults in its own domain, and anything 

the module is unable to handle would be propagated “up the chain” until the correct level had 

been reached to resolve the fault or conflict. This architecture is described in more detail in Sec-

tion 2.3 and builds on previous work at JPL [3, 5, 8]. 

Mapping and Situational Awareness. The sensing subsystem is responsible for maintaining both 

a detailed geometric model of the vehicle’s environment, as well as a higher level representation 

of the environment around the vehicle, including  knowledge of moving obstacles and road fea- 



Team Caltech 

3 

 

Figure 1:  Systems architecture for operation of Alice in the 2007 Challenge. The sensing subsys-

tem is responsible for building a representation of the local environment and passing this to the 

navigation subsystems, which computes and commands the motion of the vehicle. Additional 

functionality is provided for process and health management, along with data logging and simula-

tion. The modules in blue (dark shading) were present in the 2005 architecture, the modules in red 

(lighter shading) are new modules that are currently being tested. Dashed boxes indicate func-

tional subsystems and align with organizational teams. 

tures. It associates sensed data with prior information and broadcasts the structure and uncer-

tainty in the environment to the navigation subsystem. The mapping module maintains a vector-

ized representation of static and dynamic sensed obstacles, as well as detected lane lines, stop 

lines and waypoints. The map uses a 2.5 dimensional representation where the world is projected 

into a flat 2D plane, but individual elements may have some non-zero height. Each sensed ele-

ment is tracked over time and when multiple sensors overlap in field of view, the elements will 

be fused to improve robustness to false positives as well as overall accuracy. These methods are 

described in more detail in Section 2.2. 

Route, Traffic and Path Planning. The planning subsystem determines desired motion of the sys-

tem, taking into account the current route network and mission goals, traffic patterns and driving 

rules, and terrain features (including static obstacles). This subsystem is also responsible for pre-

dicting motion of moving obstacles, based on models of driving behavior and traffic rules, and 

for implementing defensive driving techniques. The planning problem is divided into three sub-

problems (route, traffic, and path planning) and implemented in separate modules. This decom-

position is well-suited to implementation by a large development team and modules can be de-

veloped and tested using earlier revisions of the code base as well as using simulation environ-

ments described in more detail below. This approach also allows easy access to the different lay-

ers of environment representation that are needed by different planning modules. Additional de-

tails are provided in Section 2.3. 

Design Scenarios  Our design choices have been driven through the development of a set of sce-

narios, derived from the DARPA Technical Criteria, that are used to explore design choices. 

Three such scenarios are shown in Figure 2, which shows examples of “corridor plans” for mov-

ing through an intersection, navigating in a parking lot, and executing a U-turn.  

 



Team Caltech 

4 

  

Figure 2:  Corridor plan for three (static) driving scenarios: turning at an intersection, navigating 

in a parking lot and executing a U-turn. 

The first corridor plan corresponds to driving down a road toward an intersection. Away from the 

intersection, travel in either lane is possible, with travel in the left hand lane for passing pur-

poses. Near the intersection, only travel in the right hand lane is allowed. Each corridor segment 

includes an allowable direction of travel. Once the vehicle reaches the intersection and comes to 

a stop, the traffic planner checks to see if it is possible to execute the next stage of the mission 

plan. Once there is sufficient clearance in the intersection, a corridor plan through the intersec-

tion is generated. Again, each corridor segment includes an allowable direction of travel. In the 

parking zone, the corridor plan provides information on the region of allowable motion and indi-

cates that motion in any direction is possible. A change in plan occurs when the a valid corridor 

plan cannot be found. Initially, a corridor plan is generated that takes the vehicle to the desired 

checkpoint (star). As the vehicle traverses the course, the corridor is determined to be blocked 

and the corridor plan fails. A new route is generated by the mission planner that indicates we 

must turn around and return from the direction we came. At this point, the traffic planner gener-

ates a new cplan that allows for omnidirectional motion in the middle of the street. The dynamic 

planner then computes a U-turn maneuver to satisfy the (new) mission goal. 

Examples of additional scenarios that have been used in evaluating the system architecture 

and design choices include emergency maneuvers involving a vehicle approaching in our lane, 

approaching and passing a moving car, and a GPS outage while rounding corner, with state jump 

bigger than segment spacing. 

Project Management 

Figure 3 gives a high level view of our workplan.  We break the project into five primary tasks, 

each associated with one of the teams in our organizational structure:  

• Program Management (Integrated Product Team [IPT]) - overall management of all pro-

ject activities, including setting and updating project specifications and goals, setting 

schedules, organizing design reviews (Rx), and managing funded and voluntary personnel 



Team Caltech 

5 

 

Figure 3:  Task breakdown and milestone schedule. Rx = internal project reviews, Dx = internal 

demonstrations, Mx = DARPA milestones. The solid line indicates the current level of progress 

against each task. 

 

• Navigation and Planning (Navigation Team) - transition and implement navigation algo-

rithms developed by Caltech/JPL and Northrop Grumman Corporation (NGC). Develop, 

implement and test new algorithms for optimization-based planning in complex, dynamic, 

uncertain urban environments. 

• Sensing and Mapping (Sensing team) - transition and implement sensing algorithms de-

veloped by Caltech/JPL under other funding. Develop, implement and test new algorithms 

for sensing, mapping in dynamic environments, and situational awareness. 

• Mission and Contingency Management (Systems team) - transition and implement a sys-

tems architecture for mission and contingency management based on techniques developed 

at JPL that will allow robust operation in complex scenarios. 

• Simulation and Testing (Systems team, Operations team) - simulation and testing of hard-

ware and software associated with the project, as well as maintenance of vehicle infra-

structure. This task will also be responsible for executing quarterly demonstrations (Dx).  

2  Analysis and Design 

In this section we describe the main subsystems in Alice and provide a summary of the technical 

approach we are taking, analysis results that led to design choices, and simulations and experi-

ments to characterize component and subsystem performance. 

2.1  Vehicle Hardware and Control Systems 

Alice is a 2005 Ford E-350 van modified by Sportsmobile West to provide a rugged platform 

suitable for housing our computation, sensing and actuation systems (see [2] for a more detailed 

description). We have modified Alice with custom reinforced bumpers and roof sensor mounts 



Team Caltech 

6 

purchased from Aluminess Products. Alice’s front and rear roof sensor mounts are fixed position 

slotted rail, which allows for quick and easy reconfiguration of the sensor package. Alice is cur-

rently outfitted with multiple fixed mount ladar sensors and stereo camera pairs, as well as an 

Applanix POS-LV unit for pose and filtered navigation information, as shown in Figure 4.  

   

Figure 4:  Team Caltech’s autonomous vehicle, Alice. The left figure shows a front view of Alice, 

front which the horizontal ladars (embedded in the bumper), downward pointing ladars (above 

bumper and roof) and stereo cameras are visible. The right figure shows a side view, from which 

the same sensors and the Applanix GPS and DMI sensors are also visible. 

By Summer 2007 we will have mounted an AC-20 vehicle tracking radar purchased from TRW, 

as well as at least one pan-tilt sensor platform. 

A new power distribution system is being designed for Alice that replaces the previous col-

lection of custom-built power distribution, with off the shelf solutions from the marine and RV 

industries. The entire electrical system is protected against interruption of the Honda EU3000 

AC generator through two Accumentrics military-grade uninterruptable power supplies. These 

also serve as power conditioners and AC (80-265 V, 47-440 Hz) to 24 VDC converters. A multi-

stage fusing and breaker design protects equipment from damage and maintains the safety of the 

vehicle. 

We are purchasing an E-stop system from Torc Technologies as a drop-in replacement until 

the final installation of the DARPA-provided Omnitech Robotics E-stop. In addition to the re-

mote-stop capability provided by this unit we are also able to stop the vehicle through one of 3 

large kill-switches placed around the vehicle. One each is located on the rear-driver and rear-

passenger panels, and the third is located within reach of the driver or passenger in the front of 

the cabin. The vehicle’s E-stop is also fully triggerable through the computer system. Upon E-

stop disable, the vehicle cuts power to the throttle as well as triggering a reserve pressure tank to 

fire and immediately fully depress the brake. E-stop disable can only be cleared by physically 

entering the vehicle and manually toggling the clear switch. Alice is also equipped with a tone 

and light system that operate continuously when the vehicle is running autonomously. 

Vehicle pose  The vehicle position, orientation and velocity are determined using an Applanix 

POS-LV 420 internal measurement system. The POS-LV is an advanced navigation unit that in-



Team Caltech 

7 

tegrates two GPS antennas, an inertial measurement unit (IMU), differential GPS corrections and 

a wheel odometer. The POS-LV provides a full navigation solution that includes position in 

global coordinates (latitude, longitude and altitude), orientation along three axes (roll, pitch and 

heading), velocity and angular rates. Detailed information can be requested from the unit in the 

form of different messages, including estimated root mean square (RMS) precision values and 

precision ellipsoids, raw sensor data, and diagnostic information on the different subsystems. 

We have run different tests to evaluate the performance of the Applanix POS-LV. We evalu-

ated the estimate of the global position and of the vehicle kinematics by analyzing the RMS ac-

curacy on the estimated variables. Such an accuracy provides a measure of the confidence inter-

val around the estimated variable in which the real variable lies, and it is provided by the unit 

itself. Without a differential GPS receiver the latitude-longitude RMS accuracy usually remains 

greater than 2 meters. When the dGPS is connected and correctly working, the RMS precision is 

usually between 0.35 and 0.55 meters. The velocity vector components are estimated with an 

RMS accuracy of approximately 0.5 meters per second, while the orientation RMS accuracy is 

0.015 degrees on each axis. We have also performed tests in which the GPS signal was blocked, 

because of tall buildings and trees covering the road. After a couple of miles driving, the POS-

LV accuracy was still within a few meters, while the system used in Alice in the 2005 DARPA 

Grand Challenge was reporting an accuracy larger than 100 meters. 

Trajectory Control  The design specification for our trajectory tracking algorithm is to receive a 

trajectory from a planning module and output appropriate actuator commands to keep Alice on 

this trajectory. The inputs to the algorithm are the current state of the vehicle (position and orien-

tation, along with first and second derivatives) and the desired trajectory (specified in northing 

and easting coordinates, with their first and second derivatives). From these inputs, the algorithm 

outputs steering and brake/throttle commands to Alice through a software interface. This capabil-

ity was developed for the 2005 Grand Challenge and demonstrated the ability to provide +0/-

10% for velocity tracking, and ±20 cm perpendicular y-error at 5 m/s, with larger errors allow-

able at higher speeds [2]. 

2.2  Sensing subsystem 

We have developed approaches for sensing, mapping and situational awareness that build on past 

work at Caltech/JPL. The bottom layer of the sensing stack consists of the sensing hardware, and 

low level drivers and feeders that make the raw sensed data available to the perception algo-

rithms. We have perception algorithms which detect and track lines on the road, static obstacles, 

traversable hazards, and moving vehicles. This data is then fed into the mapper and fused to form 

a map database which is used by the planners. 

A primary focus of our work has been to effectively incorporate uncertainty and error com-

pensation throughout the system. Uncertainty in the different perceptors can propagate through 

the sensing stack and is not only used for more effective multi-sensor fusion, but can be used by 

the planning subsystem to make safer and more informed control decisions. In addition to esti-

mating the uncertainty in the positions of the sensed objects, we also include a metric of the con-

fidence that the object exists. This confidence level is initially low, but increases as the object is 

tracked over time, and as more than one sensor detects the object. This allows us the flexibility to 

pass hypothetical objects that are sensed with less accurate, longer range sensors into the map 

even if we are not sure about whether the object really exists. This can be useful to provide the 



Team Caltech 

8 

planning subsystem with advanced warning that there may be a reason to slow down and to make 

sure our commanded velocity is safe in case the object does exist. As Alice gets closer to the hy-

pothetical object, more sensors are brought to bear over longer time, and the uncertainty is re-

duced so that it is either removed from the map, or has a very high confidence of existence and 

we plan around it. 

Another important design advantage for our sensing stack is the networked architecture that 

we have developed and tested on Alice. The advantage of using a networked architecture is the 

ability to leverage a large number of sensors in a modular fashion. However, this distributed ap-

proach also brings several new challenges, including managing communication resources and 

accounting for time skew and spatial registration between sensors. These challenges are met by 

our sensor feeders which enable efficient and effective registration and sharing of the large 

amounts of sensed data. 

In this section we will give a more detailed overview of the sensing hardware, the sensor 

feeders, the line and obstacle detectors and trackers and the mapping module.  

Sensing hardware  The sensing hardware for Alice was chosen based on an assessment of pos-

sible causes of mission failure, comparison of the sensor converge against each of the technical 

evaluation criteria and the current sensor footprint of the vehicle. Figure 5 provides a summary 

of the current planned sensor suite for the vehicle. The use of a pan/tilt unit was chosen to pro-

vide the ability to make use of a long range, narrow beam RADAR at distances of up to 200 me-

ters. This pan tilt unit also allows additional sensors to be directed toward the rear of the vehicle, 

when needed. An infrared camera is being evaluated as a mechanism to allow better identifica-

tion of other vehicles at intersections and while driving. 

Feeder  On the software side, each sensor is managed by a sensor feeder module. Feeders have 

four main responsibilities: (1) To interface with the sensor hardware, including start-up and shut-

down sequences, configuration management and health monitoring. (2) To maintain accurate 

sensor calibration, such as focal length (for cameras) and the sensor-to-vehicle coordinate trans-

forms (all sensors). (3) To perform data pre-processing, such as image rectification and dense 

stereo ranging (cameras). (4) To tag sensor data with the corresponding vehicle pose data, such 

that all data can be placed in a common coordinate frame. 

Data from feeders is transmitted to perceptors using a specialized high-bandwidth, low-

latency communication package called SensNet. SensNet’s connection model is many-to-many, 

such that each feeder can supply multiple perceptors and each perceptor can subscribe to multi-

ple feeders. Perceptors can therefore draw on any combination of sensors and/or sensor modali-

ties to accomplish their task (e.g., a road perceptor can use both forward-facing cameras and 

forward-facing ladars). SensNet will also choose an appropriate interprocess communication 

method based on the location of the communicating modules. For modules on the same physical 

machine, the method is shared memory; for modules on different machines, the method is 

Spread/TCP/Ethernet. 

The feeder/perceptor architecture, as supported by SensNet, affords tremendous flexibility in 

the design and development of perceptual components. It supports modular, parallel develop-

ment (in which both new feeders and new perceptors can be easily added) and allows program- 



Team Caltech 

9 

  

Figure 5:  Sensor suite. Items marked with an asterisk have not yet been installed on the system. 

 

mers to focus on algorithms rather than infrastructure. Latency remains a limiting factor, how-

ever: it takes up to 100 milliseconds to transmit a 2 MByte stereo image frame over Gigabit 

Ethernet, so perceptors that make heavy use of stereo image data must be co-located with their 

stereo feeders (where faster shared memory can be employed). 

Figures 6 through 9 show example outputs from the sensor feeders. Figure 6 shows the left/right 

images from the roof-mounted long-baseline stereo camera pair, along with the range computed 

by the JPL stereo software (brighter is closer). Significant features such as cars, trucks and off-

road obstacles are clearly discernible. Similarly Figure 7 shows the point cloud generated by the 

two roof-mounted terrain-sensing lidars (color-coded by elevation).  

    

  

Figure 6:  Output from the stereo feeder: left, right and range images (brighter is closer). 

 



Team Caltech 

10 

  

Figure 7:  Output from roof ladar feeders (fused over multiple frames). The point clouds are col-

ored by elevation, with blue low and red high. 

Figure 8 shows data from multiple sensors (ladar and stereo) as visualized by our viewer util-

ity. The data is first transformed into a common vehicle-centric frame, then projected into the 

world frame using pose data from the Applanix unit. The data is shown superimposed on ortho-

rectified geo-references aerial imagery (for reference). Note the car crossing in front of Alice;  

  

Figure 8:  Combined stereo and ladar data for an intersection (the data is geo-registered and su-

perimposed on a aerial image). Both ladar and stereo points are colored by elevation (blue low, 

red high). Note that the vehicle crossing in front of Alice is detected by both the side-facing and 

forward facing ladars. 



Team Caltech 

11 

this is not yet in the camera field-of-view, but shows up clearly in two of the ladar scanners. 

Since the ladars are not synchronized and the car is moving, the two scans are slightly different.  

Figure 9 shows another intersection with oncoming traffic. In this case, the red car on the 

other side of the intersection is beyond the effective range of ladar, but appears quite distinctly in 

the stereo data.  

  

Figure 9:  Combined stereo and ladar data for another intersection. The stereo detects the incom-

ing red car on the other side of the intersection (approximately 45m), while the ladar detects the 

nearer (stationary) silver car. 

 

Road Line Detection and Tracking  We have developed methods to detect lane lines and stop 

lines from the image data collected by the short range stereo camera pairs. We first detect candi-

date lines in each frame, and then track multiple lines over time to further refine our estimate and 

reduce noise. The tracked lines are passed to the mapper where they are associated with prior 

RNDF line information to refine our situational awareness. 

The first step of the algorithm is to remove the perspective effect from the image. This helps 

in solving the problem of varying width of line in the image. The technique used is called Inverse 

Perspective Mapping (IPM), in which we assume the road is a flat plane, and use the camera in-

trinsic (focal length and optical center) and extrinsic (pitch angle, yaw angle, and height above 

ground) parameters to take a top view of the road. This makes the width of any line uniform and 

independent of its position in the image, and only dependent on its real width in reality. It also 

removes the perspective effect, so that lines parallel to the optical axis will be parallel and verti-

cal. 



Team Caltech 

12 

After taking a top view of the image, we use convolution kernels to detect near horizontal (or 

near vertical) lines in the image. By using a kernel of the appropriate shape, we can emphasize 

lines of specified width. For a horizontal line, the kernel has a Gaussian in the x-direction and a 

second-derivative of Gaussian in the y-direction. The scales of the horizontal and vertical aread-

justed according to the width and height of the type of line to be detected. For example, the scale 

in the horizontal direction can be chosen such that we have enough width to detect at least  2 m 

lines (whose pixel equivalent can be computed from the IMP transformation). Similarly, the ver-

tical scale is chosen to detect lines of thickness 12”, allowing us to detect stop lines bounded by 

these dimensions. 

Next, we threshold the image to get rid of the lower responses. This is done by keeping only 

the top 2% percentiles of the filtered image pixels, which correspond to the highest responses 

obtained from the stop line in the image. We then perform pixel grouping on the remaining pix-

els, to get the parameters of the line in the image (position and orientation). We used Hough 

Transform line grouping algorithm, which provides flexibility in detecting lines of any orienta-

tion or position in the image. The orientations are searched between ±10 degrees of horizontal or 

vertical, which allows for lane features that are not orthogonally aligned to the vehicle to be de-

tected. 

Finally, after detecting the position and orientation of the line, we work on determining the 

two endpoints of the line. This works by getting the pixels belonging to the detected stop line, 

using Bresenham’s line drawing algorithm [1], and then convolving a smoothed version of the 

pixel values on the line with two kernels representing a rising and a falling edge, and getting the 

points of maximum response. The overall approach is summarized in Figure 10.  

  

Figure 10:  Summary of stop line algorithm. 

After a line is detected, we need to choose a representation for the line to be able to track it 

over time. Choices include the coordinate frame for tracking the line (image, vehicle or ground 



Team Caltech 

13 

referenced), the representation of the stop line (midpoint or endpoints), and motion models (con-

stant velocity, constant acceleration). Five different combinations have been chosen and tried 

out, which gave us five different models and implementations. After identifying the model, the 

representation, and the coordinate frame, a Kalman filter is implemented to track the stop lines 

detected. A Kalman filter tracker is initiated when we detect 3 stop lines in three consecutive 

frames that are sufficiently close to each other. This helps eliminate triggering on false positives 

in the detection algorithm. Then, if there are no detections for 5 consecutive frames, we eliminate 

the existing tracker, as this indicates that the stop line has gone out of the camera view. 

Obstacle Detection and Tracking 

 Our primary sensors for object detection and tracking are the four bumper-mounted ladars. In an 

urban environment most obstacles that are of concern, in particular other vehicles, will be at least 

bumper height and approximately vertical. Thus, a 2-dimensional representation of the world for 

the purposes of object tracking is a suitable first approximation. Future options include adding 

perceptors that take data from the two sweeping ladars (for terrain information), multiple stereo 

pairs and a radar unit for long-range moving object detection and tracking.  

Currently, ladar range and angle data is received from any one of the four bumper-mounted 

ladar units, as well as the current state estimate for the vehicle pose. The output of this perceptor 

is a list of tracked objects, both static and dynamic, sent to the mapper. The architecture has been 

divided into discrete steps: segmentation, initial data association, classification, model update 

and cleanup. 

The first step is to identify individual objects from each input ladar scan. Discontinuities in 

adjacent range measurements above a threshold are used to break the scan up into objects. The 

points for each object are immediately projected into the local coordinate system, relying on the 

accuracy of the state data and sensor calibration. All further calculations are performed in this 

frame, allowing the algorithm’s assumptions to be independent of Alice’s current motion.  

Due to the 75 Hz update rate of the ladar units and the relatively slow speed of vehicles in the 

race, a good initial association of new data to previously seen objects can be made simply using 

proximity. Once new data has been associated with the object, the Kalman filter estimating posi-

tion and velocity is updated, but only if it is possible to match an edge of the object to a previ-

ously seen edge. Here, occlusion is taken into account to differentiate between one edge of an 

object truly moving and an object appearing to grow as it is revealed by another moving object in 

the foreground. If after a certain number of observations the object’s estimated velocity is above 

a threshold, it is classified as a car. Cars are represented by a rectangle, which allows more pre-

cise tracking of features of the car through partial occlusions.  

This system has been shown to work well at tracking objects in a simple environment, includ-

ing correctly tracking cars through complete occlusions. Figure 11 shows some of the current 

capabilities of this perceptor.  

 



Team Caltech 

14 

    

Figure 11:  Moving obstacle detection. The left figure shows the estimated position of Alice and a 

vehicle moving in front of Alice under manual driving. The same scenarios is shown on the right, 

with additional static obstacles present. The green dots are ladar returns that have been classified 

as belonging to static objects, the red dots are the previous path of the tracked car, and the blue 

box is the tracked car. 

Mapper  The mapper defines the interface between the sensing and the planning subsystems. 

The mapper receives tracked map elements from the various sensors and fuses this sensed infor-

mation together to maintain a cohesive map element database. The database consists of static and 

dynamic sensed obstacles, as well as sensed road features and lines. Map elements are repre-

sented as 2.5 dimensional vectorized objects with a representation of uncertainty in position, as 

well as uncertainty in velocity and height if applicable. The mapper associates the sensed road 

features with the RNDF prior information, and this method can be extended to become the basis 

for sensor based localization if needed. Each map element also maintains a notion of the confi-

dence of existence which is determined by the quality of the detection, the amount of time the 

element has been tracked, and the number of different sensors which detect the element.  

We are in the early stages of fusing objects detected by both the stereo cameras and the ladars. 

Figure 12 shows our 3D viewer visualizing the ladar data taken at the same time as the stereo 

data. Figure 12b shows Alice in white and the vehicle position estimates in yellow projected into 

the planar map. The red boxes represent tracked static obstacles. The figures shown represent 

data taken at a single time stamp and are meant to give a brief example of fusing data and popu-

lating the map. 

The mapper not only maintains the database of obstacles and road features, but it also associ-

ates obstacles with elements of the road topology. For example, the planning subsystem can 

query the map for all obstacles in a single lane or for all obstacles in the range of sensor visibility 

for a specific intersection. The mapper also maintains an estimate of the cost of traversal for 

lengths of road, which it passes to the mission planner to help refine the graph search for the best 

route to complete the mission.  



Team Caltech 

15 

[]    []     

Figure 12:  Map representation with Alice in white and two tracked vehicles in yellow. (a) Ladar 

and stereo vision data from an experimental run. (b) Map representation of the same scene. 

2.3  Planning subsystem 

Planning in urban environments is challenging for a number of reasons: first the environment is 

generally structured and, combined with traffic rules, specific vehicle behavior is required. Sec-

ond, the environment is dynamic, including other autonomous vehicles. Third, there will always 

be uncertainty in the sensed environment and the plans have to reflect this. To accomplish this 

planning task, a multi-level decomposition as shown in Figure 1 is used. A mission planner de-

termines a route through the road network (specified in the RNDF) based on the current mission 

(from the MDF). The route plan is modified to account for blockages and other known traffic 

conditions, and is the input to a traffic planner. The traffic planner combines this route (goal) 

with the sensed static environment and traffic rules to determine what motion is allowed. It rea-

sons abstractly about other vehicle behavior to adjust the plan and provides a corridor description 

to the optimization-based path planner. The corridor contains geometric constraint information, 

as well as a cost map and velocity profile. The path planner integrates the corridor information 

with dynamic obstacle motion prediction to determine a dynamically feasible path that avoids 

obstacles and follows traffic rules. This planner is also capable of planning in unstructured zones. 

In this section we describe the individual algorithms that we have developed using this de-

composition, beginning with the software architecture used to implement the planning subsys-

tem. 

Canonical Software Architecture  The modules that make up the planning system are respon-

sible for reasoning at different levels of abstraction. Hence the planning system is decomposed 

into a hierarchical framework. To support this decomposition and separation of functionality, 

while maintaining communication and contingency management, we implement the planning 

subsystem in a canonical software architecture (CSA) as shown in Figure 13.  

 



Team Caltech 

16 

  

Figure 13:  The planning subsystem in the Canonical Software Architecture. Boxes with double 

lined borders are subsystems that will be broken up into multiple CSA modules. 

This architecture builds on the state analysis framework developed at JPL [3, 8, 5] and takes the 

approach of clearly delineating state estimation and control determination. To prevent the mod-

ules from getting out of sync because of the inconsistency in state knowledge, we require that 

there is only one source of state knowledge although it may be captured in different abstractions 

for different modules.  

For modularity, each planner may be broken down into multiple CSA modules. A CSA mod-

ule consists of three components—Arbitration, Control and Tactics—and communicates with its 

neighbors through directives and status messages, as shown in Figure 14.  

  

Figure 14:  A generic control module in the Canonical Software Architecture. 



Team Caltech 

17 

Arbitration is responsible for (1) managing the overall behavior of the module by issuing a 

merged directive, computed from all the received directives, to the Control; and (2) reporting 

failure, rejection, acceptance and completeness of a received directive to the Control of the issu-

ing module. Control is responsible for (1) computing the output directives to the controlled mod-

ule(s) based on the merged directive, received status and state information; and (2) reporting 

failure and completeness of a merged directive to the Arbiter. Tactics provides the core function-

ality of the module and is responsible for generating a control tactic or a contiguous series of 

control tactics, as requested by Control. 

Mission Planner  The mission planner has five main responsibilities and is broken up into two 

estimation and three CSA control modules: the estimation of the traversibility graph which rep-

resents the connectivity of the route network (Traversibility Graph Estimator), the estimation of 

the vehicle capability which is an abstraction of the system health (Vehicle Capability Estima-

tor), the determination of mission goals and conditions under which we can continue the race 

(Mission Control), the determination of segment-level goals (Route Planner) and the manage-

ment of system health (Vehicle Capability Control). 

The route planner communicates with the traffic planner using the common CSA interface 

protocols. Thus, it will be notified by the traffic planner when a segment-level goal directive is 

rejected, accepted, completed or failed. For example, since one of the rules specified in a seg-

ment-level goal directive is to avoid obstacles, when a road is blocked the directive will fail. 

Since the default behavior of the traffic planner is to keep the vehicle at pause, the vehicle will 

stay at pause while the route planner replans the route. When the failure of a segment-level goal 

directive is received, the route planner will request an updated traversibility graph from the 

traversibility graph estimator module. Since this graph is built from the same map used by the 

traffic planner, the obstacle that blocks the road will also show up in the traversibility graph, re-

sulting in the removal of all the edges corresponding to going forward, leaving only the U-turn 

edges from the current position node. Thus, the new segment-level goal directive computed by 

the Control of the route planner will be making a U-turn and following all the U-turn rules. This 

directive will go down the planning hierarchy and get refined to the point where the correspond-

ing actuators are commanded to make a legal U-turn. 

Traffic Planner  The Traffic Planner is a software subsystem that encapsulates three main re-

sponsibilities: the estimation of the autonomous vehicle’s state in the context of a traffic situation 

(Traffic State Estimator), the determination of a control action based on the estimated traffic 

state, mission goals and sensing data (Traffic Planner Control) and the determination of a set of 

hard constraints that define the boundaries of a safe navigable corridor for the autonomous vehi-

cle based on control action and sensing data (Corridor Determination). Three CSA modules and 

their interaction are shown in Figure 15.  

 



Team Caltech 

18 

  

Figure 15:  Control Action Determination by the Traffic Planner Control subsystem. Note: Traffic 

State and Control Action finite state machines pictured here are not complete. 

The Traffic State Estimator estimates traffic state, which is an abstract representation of the 

autonomous vehicle’s current traffic situation. This traffic state is constructed and determined by 

simultaneously considering sensing data and the vehicle’s state information (position and veloc-

ity) and comparing it to a known list of possible traffic states. The Traffic Planner Control is re-

sponsible for making high-level control decisions such as “Lane Keeping” and “Lane Changing”. 

The control action is determined by evaluating a current segment-level goal while concurrently 

assessing both the traffic state estimate and relevant real-time sensing information. The Corridor 

Determination calculates a safe corridor and velocity profile based on a determined control ac-

tion and traffic state. The resulting corridor is analyzed for feasibility and safety with respect to 

potential conflicts such as blocking static obstacles or potential collision with other dynamic ob-

stacles.  

Traffic states and control actions are encoded as two separate probabilistic finite state ma-

chines. The motivation for this separation is to delineate traffic state knowledge from control and 

corridor determination, thereby reducing dependencies that could lead to the degeneration of sys-

tem robustness. In addition, such a design promotes a clearer separation of functionality that in 

turn is amenable to extension and better code organization. 

The probabilistic finite state machine is implemented as a directed graph whose nodes are 

states, corresponding to either a traffic state or a control action, and whose directed edges define 

transition conditions between either traffic states or control actions. 

To reduce the likelihood of state explosion, we determined a small set of traffic states and 

control actions that respectively describe traffic situations and driving criteria derived from 

DARPA guidelines. Our intention is to describe traffic states in a specific yet reusable way in 

order to subsequently specialize them with respect to dynamic traffic situation that are relevant 

for control action determination. For example, a “Road Segment” traffic state may be specialized 

with information on obstacles in the neighboring lane if we are determining whether the control 

transition to “Lane Change” is feasible. On the other hand, the “Intersection Stop” traffic state 

may be specialized with information on obstacles at other parts of the intersection, along with 

precedence rules, to determine whether the control transition “Stopped” to “Lane Keeping” is 

allowed (i.e. if it is possible to proceed through the intersection). 



Team Caltech 

19 

During traffic state estimation, a set of traffic states is computed with a measure of uncer-

tainty by evaluating transition conditions of the current traffic state with respect to the autono-

mous vehicle’s position/velocity and sensing data. All transitions between states encapsulate the 

set of conditions by which a traffic state is reached. During the evaluation of such transitions, the 

Traffic State Estimator determines the probability associated to meeting each transition’s particu-

lar conditions. A probability distribution is computed on the set of possible traffic states and the 

most likely state is determined.  

The Traffic Planner Control determines the control action by simultaneously evaluating rules 

associated to the composition of estimated traffic state, the mission directive, sensing data and 

mission preferences. These rules along with associated traffic rules are encapsulated in control 

transitions. The Traffic Planner Control calculates the probability associated with meeting a con-

trol transition condition by augmenting it with a measure of safety and a qualitative assessment 

describing the reason and degree to which a control transition has not been met.  

Corridor determination is implemented generically for each control action, and specialized at 

the time of control action determination. The assumption is that each control action has a generic 

corridor associated to it but that it changes with respect to parameterizations. For example the 

“Lane Changing” corridor has a general shape but is parameterized by the lane to change into. 

The velocity profile is determined after the corridor is determined and is constrained by traffic 

rules (speed limits). 

Dynamic planner  Alice’s previous architecture used a speed-based cost map to determine how 

to drive through a given section of terrain as quickly as possible. To extend our optimization-

based controller to handle dynamic environments, we are making use of recent developments in 

optimization-based path planning at Northrop Grumman and Caltech, which have been imple-

mented in the OTGX (optimal trajectory generation) software package [4]. OTGX extends pre-

vious work at Caltech in real-time trajectory generation [6, 7] by using non-uniform rational B- 

splines (NURBS) as a basis for exploring optimal paths that satisfy the dynamics of the vehicle 

as well as constraints on inputs and states. 

The dynamic planner solves an optimization problem specified by the segment goal, the cor-

ridor plan and local features, including the moving vehicles and road features. The cost function 

for the dynamic planner is in the form  

 

 

! 

J =
t0

t0 +T

" Ls(x,#) + Lm (x,#) + Lg (x,#)( )d# +Vg (x(T),T) (1) 

where  

! 

L
s
(x," ) = static cost due to terrain, corridor, static obstacles 

! 

L
m
(x," ) = dynamic cost due to moving vehicles 

! 

Lg (x," )  = integral cost associated with mission goal (optional) 

! 

Vg (x(T),T) = terminal cost associated with mission goal 

The terminal time T is left free.  

Figure 16 illustrates the generation of trajectories using the OTGX package.  



Team Caltech 

20 

    

Figure 16:  Dynamic planner. The figure on the left shows a sample corridor passed to the dy-

namic planner. A set of overlapping polytopes is fit to this corridor for the purpose of choosing 

NURBS basis functions. These basis functions are then used to plan an optimal path that stays in-

side the corridor. 

The development of core functionality in this module has lagged behind the planned schedule 

and has caused some delay in testing functions that require non-trivial planning computations. 

2.4  Vehicle computing 

Computing will provided using a a compact PCI computing system using 8 Intel Core 2 Duo and 

2 Core Duo blades. This configuration provides several benefits, including high speed process-

ing, efficient form factor and reduced power consumption. Each of the 10 blades will be con-

nected to a common backplane with two 24-port gigabit ethernet switchboards. 

2.5  Simulation capabilities 

Team Caltech’s core simulation software is composed of a kinematic simulator, which replaces 

the vehicle, and a traffic simulator, which replaces the environment. By running both of these 

programs, a developer can close the loop around the planning stack and test a variety of scenar-

ios like those that will be encountered in the race. The simulation will soon be capable of simu-

lating almost all scenarios that might be encountered at the site visit. 

The kinematic simulator uses a kinematic model of Alice to update the vehicle state at each 

simulation time step. This information can then be sent to other software modules that request it. 

Noise is optionally added to this state data, increasing the realism of the simulation. 

The traffic simulator is primarily intended to test navigation and traffic-planning software. It 

offers a flexible combination of pre-designed, scenario-specific tests that can be loaded as mod-

ules, and interactive, on-the-fly additions such as the ability to add vehicles and roads at runtime. 

The interactive GUI is shown in Figure 17. 



Team Caltech 

21 

    

Figure 17:  A four-way intersection in the traffic simulator. The simulated cars are red, and Alice 

is yellow. Cars 1 and 2 approached the intersection at almost the same time, so Car 1 has stopped 

and is waiting for 2 to clear the intersection before proceeding. 

The traffic simulation software can create road networks with intersections and arbitrary number 

of lanes. These can either be created interactively, or by loading from an RNDF or configuration 

file. It is capable of simulating both individual cars and continuous traffic streams. Like roads, 

these cars can either be added during simulator or preloaded. The vehicles all follow basic traffic 

rules, such as avoiding collisions with other vehicles (including “Alice”) and obeying intersec-

tion rules. Stopped vehicles can be added in arbitrary locations, and moving vehicles are added 

to specific lanes and follow a set path than can be modified as desired.  

In addition to autonomous vehicles, the traffic simulator can load an externally-controlled 

vehicle, commanded either by another software module or by the user via keyboard commands. 

In this way, “Alice” is simulated in the simulation environment and can interact with the other 

vehicles. Once an Alice vehicle is added to the traffic simulator, the software can then extract 

environment information around Alice and transmit it to the mapping software, thus mimicking 

the vehicle sensors. In addition to these dynamic objects, static obstacles of arbitrary size can be 

preloaded or placed anywhere in the environment with the click of a mouse. The traffic simulator 

can save and load complete environment configurations, allowing the user to run specific tests 

repeatedly. 

3  Results and Performance 

In this section we describe some of results obtained thus far using our system, including the re-

port of the independent test team. 

Substantial work has been done on demonstrating the ability of the system components to 

perform their desired function using the simulation environment described above. An example 

scenario is shown in Figure 18.  



Team Caltech 

22 

  

Figure 18:  Sample simulation of planner stack. 

Additional simulations have been run using hand placed obstacles and we have demonstrated the 

ability of the mission and traffic planners detect a blocked road, replan the route and execute a 

U-turn. Due to limitations in the capabilities of the dynamic planner at the time of testing, it was 

not possible to run this scenario on the vehicle. 

Experimental demonstrations and evaluations have also been carried out and we have found 

that our simulation environment provides a faithful description of the system dynamics. In par-

ticular, we see relatively little different in the performance of the planning subsystem between 

the simulation and the full vehicle. The sensing subsystem can not be fully tested in closed loop 

operation through simulation, but extensive testing on logged data has demonstrated the efficacy 

of the modules that have been developed, as summarized already in Section 2.2.  

3.1  Independent Test Team Report 

Three sets of field tests have been planned by the Caltech team. Scheduled for December 2006, 

March 2007 and June 2007, these tests are based on the capabilities required by the DARPA 

Technical Evaluation Criteria. The first field trial covered the technical evaluation criteria speci-

fied in sections A1–A12 and C5. The second field trial covered the technical evaluation criteria 

specified in sections B1–B4 and C1–C6. The final field trial scheduled for June will cover the 

technical evaluation criteria specified in sections D1–D9. In addition the final trial will have a 60 

mile mission level test. Beyond the field trials, during the Summer of 2007 a series of bi-weekly 

tests will be conducted to verify additional capabilities and search for operational weaknesses. 

The Independent Test Team (ITT) has developed a set of test suites which cover four differ-

ent areas: Basic Navigation, Traffic Interaction and Obstacle Avoidance, Traffic Law Compli-

ance, and Mission Level Testing. Individual tests or sets of tests from each test suite are selected 

to verify that a particular element of the technical evaluation criteria is satisfied. All tests devel-

oped by the ITT consist of a RNDF file and MDF file based at one of the Caltech team test sites. 

To date these have been at the St. Luke’s test site, as shown in Figure 19.  



Team Caltech 

23 

  

Figure 19:  St. Luke test area 

The ITT does not have prior knowledge of the tests other than the technical evaluation criteria 

that will be evaluated. 

On December 17, 2006 the first of a series of tests performed by the ITT was completed. Al-

ice attempted to execute 10 of the 16 tests which were available. Of the 10 attempted all but 2 

executed to completion. Of the 8 that executed to completion, none were an unqualified success 

(see Figure 20).  

  

Figure 20:  Field test 1 results. 

The December tests were based on code derived from the previous Grand Challenge, and at that 

point, none of the sensors other than GPS were operational. However, no tests that required ob-

stacle detection were attempted. The vehicle did not yet have the capability to reverse, so all tests 

that required a U-turn were not attempted. 



Team Caltech 

24 

On March 18, 2007 the second of a series of tests performed by the ITT was completed. Alice 

attempted to execute 12 of the 27 tests which were available. Of the 12 attempted all but 3 exe-

cuted to completion. Of the 9 that executed to completion, only one failed, and three were condi-

tionally successful (see Figure 21).  

  

Figure 21:  Field test 2 results. 

Although the March test was designed as a test of traffic interaction, it essentially became a 

retest of the December field test. The software had been almost completely replaced with a new 

architecture that supported traffic interaction and road following. However, the new code did not 

support much more in terms of capability than was available in December. The March tests 

showed that the new software was better than that available in December, but few new capabili-

ties were ready. Sensing was tested on a stationary vehicle but the ability to avoid the obstacle 

was not yet implemented. In this case Alice stopped at the obstacle and attempted a U-turn. The 

U-turn function was not working correctly, so all U-turn tests were skipped as were other vehicle 

interaction test. A retest of the March field test is planned. 

3.2  Summary and Current Status 

In the past 6 months, Team Caltech has developed and begun to implement and demonstrate an 

autonomous systems architecture that is capable of performing the tasks required for the urban 

challenge. Substantial work remains to be done, both in terms of the performance and robustness 

of individual modules, and the overall system integration and testing. Slow progress on the dy-

namic planner has delayed our ability to perform some tests at the desired level, but the other 

system functions are progressing rapidly. To help speed development, an alternative planner is 

being developed that will use a simplified approach for planning in corridors capable of handling 

many of the simpler traffic situations. 



Team Caltech 

25 

Acknowledgements 

 The research in this paper was supported in part by the Defense Advanced Research Projects 

Agency (DARPA) under contract HR0011-06-C-0146, the California Institute of Technology, 

Big Dog Ventures, Northrop Grumman Corporation, Mohr Davidow Ventures and Applanix Inc. 

The authors would also like to thank the following members of Team Caltech who contrib-

uted to the work described here: Daniel Alvarez, Brandt Belson, Julia Braman, William David 

Carrillo, Arthur Chang, Edward Chen, Steve Chien, Jay Conrod, Iain Cranston, Lars Cremean, 

Josh Doubleday, Tom Duong, Luke Durant, Josh Feingold, Matthew Feldman, Tony and Sandie 

Fender, Nicholas Fette, Ken Fisher, Brent Goldman, Scott Goodfriend, Steven Gray, Rob Gro-

gan, Jerry He, Mitch Ingham, Michael Kaye, Aditya Khosla, Ghyrn Loveness, Russell Newman, 

Noele Norris, Eloka Ochuba, Kenny Oslund, Jimmy Paulos, Bob Rasumussen, Christopher Ra-

sumussen, Chris Schantz, Chess Stetson, Klimka Szwaykowska, Daniel Talancon, Daniele 

Tamino, Abhishek Tiwari, Pete Trautman, David Trotz, Glenn Wagner, Yi Wang, David Waylo-

nis, Albert Wu, Francisco Zabala and Johnny Zhang. 

References 

[1] Jack Bresenham. Algorithm for computer control of a digital plotter. IBM Systems 

Journal, 4(1):25–30, 1965. 

[2] L. B. Cremean, T. B. Foote, J. H. Gillula, G. H. Hines, D. Kogan, K. L. Kriechbaum, 

J. C. Lamb, J. Leibs, L. Lindzey, C. E. Rasmussen, A. D. Stewart, J. W. Burdick, and 

R. M. Murray. Alice: An information-rich autonomous vehicle for high-speed desert 

navigation. Journal of Field Robotics, 2006. To appear. 

[3] D. Dvorak, R. D. Rasmussen, G. Reeves, and A. Sacks. Software architecture themes in 

jpl’s mission data system. In Proceedings of 2000 IEEE Aerospace Conference, 2000. 

[4] M. E. Flores and M. B. Milam. Trajectory generation for differentially flat systems via 

NURBS basis functions with obstacle avoidance. In Proc. American Control Confer-

ence, 2006. 

[5] M. Ingham, R. Rasmussen, M. Bennett, and A. Moncada. Engineering complex embed-

ded systems with state analysis and the mission data system. J. Aerospace Computing, 

Information and Communication, 2, 2005. 

[6] M. B. Milam. Real-Time Optimal Trajectory Generation for Constrained Dynamical 

Systems. PhD thesis, California Institute of Technology, 2003. 

[7] M. B. Milam, R. Franz, J. E. Hauser, and R. M. Murray. Receding horizon control of a 

vectored thrust flight experiment. IEE Proceedings on Control Theory and Applica-

tions, 152(3):340–348, 2005. 

[8] R. D. Rasmussen. Goal based fault tolerance for space systems using the mission data 

system. In Proceedings of the 2001 IEEE Aerospace Conference, 2001. 


